OUT-OF-PLANE VIBRATION OF A UNIFORM EULER-BERNOULLI BEAM ATTACHED TO THE INSIDE OF A ROTATING RIM

S. Naguleswaran
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand

(Received 3 November 1994, and in final form 26 July 1996)

Abstract

This paper describes the out-of-plane vibration of a uniform Euler-Bernoulli beam one end of which is radially restrained (clamped or pinned) on the inside of a rotating rigid rim and the other end is radially unrestrained (clamped, pinned or free). Depending on the root offset parameter, the centrifugal axial force distribution may be wholly tensile or partly compressive and partly tensile or wholly compressive. The general solution of the mode shape differential equation is expressed as the superposition of four converging polynomial functions. Six combinations of clamped, pinned and free boundary conditions are considered, and the corresponding frequency equation is expressed in closed form, the roots of which give the natural frequencies. The first three out-of-plane dimensionless natural frequencies for typical combinations of the root offset parameter and rotational speed are presented in tabular form. Beyond a value of the root offset parameter, the frequencies increase and then decrease with increase in rotational speed. This aspect is discussed for the six combinations of the boundary conditions. It is possible for the rotational speed and a natural frequency to be equal (a "tuned" state) and for the beam to buckle at a critical rotational speed. These aspects are addressed and some representative results tabulated.

(C) 1997 Academic Press Limited

1. INTRODUCTION

This paper describes an investigation of the out-of-plane vibration of a uniform Euler-Bernoulli beam radially attached to the inside of a rigid rim which is rotating at a constant speed. The other end (radially unrestrained) will pass through or point towards the axis of rotation. Depending on the value of the root offset parameter (a measure of the root offset radius compared to the length of the beam) the centrifugal force distribution may be tensile over the whole length, compressive over part of the length and tensile over the remainder or compressive over the whole length. With increase in rotational speed, the natural frequency of vibration will either increase continously, or increase and then decrease continuously, or decrease continuously. In this study emphasis is placed on the latter. The "border" root offset parameter at which a natural frequency just decreases for an increase in rotational speed is derived numerically. If the root offset parameter is such that the frequency decreases, it is possible for a frequency to be zero at a critical rotational speed; i.e., buckling occurs. This problem is of practical and mathematical interest. Several investigators have derived the mode shape differential equation and devised various numerical methods to solve the dynamical behavior of a cantilever in a centrifugal field particularly the buckling aspect.
Mostaghel and Tadjbakhsh [1] used a method of successive approximation to estimate
the rotational speed to cause a cantilever to buckle. Nachman [2] and Lakin [3] concentrated primarily on the mathematical aspects of the mode shape differential equation. Wang [4] used the Galerkin method with shape functions represented by a set of Legendre polynomials. Lakin et al. [5] had recourse to perturbation expansions in terms of several parameters appearing in the governing equation. Lakin and Nachman [6] studied the unstable vibrations and buckling of a flexible beam rotating rapidly (which causes one of the system parameters to be small) by a singular perturbation method. Fox and Burdess [7] used the Galerkin method to solve for natural frequencies, to obtain a "tuned" rotational speed which coincides with a natural frequency and to determine the radius of the rim for which a natural frequency is zero. White et al. [8] studied the in-plane and out-of-plane buckling of a cantilever using the integrating matrix method and presented a graph of the critical speed of rotation vs root offset parameter. Steele and Barry [9] used an asymptotic matrix integration method and presented graphs of the first two in-plane natural frequencies of a cantilever and the critical rotating speed. Peters and Hodges [10] developed asymptotic expansion formulae. Fox [11] reported the effect of the coupling between the motions in the two principal planes. Nachman [12] continued the study on the mathematical aspects discussed in references [2,3] and developed a geometrically exact equation for a rotating cantilever. Kammer and Schlack [13] derived the critical rotational speed by the Liaponov's direct method. Subrahmanyam and Kaza [14] used the finite difference and the Ritz approach. Gürgöze [15] provided simple formulae from which one can calculate various approximate natural frequencies and the critical rotational speed. In references [1-15] there is broad qualitative agreement among the investigators but quantitative agreement is absent. In references $[7,11]$ it is stated that the mode shape differential equation "precludes an exact analytical solution". Eidel and Bauer [16] stated that "the partial differential equations permit no exact analytical solutions" and used the Ritz-Galerkin method with trinomials to obtain the approximate fundamental frequencies for combinations of free, clamped, hinged and guided boundaries. Wright et al. [17] studied a type of non-uniform beam under centrifugal tensile loading.

The mode shape differential equation was derived in references [1-15]. It is linear with variable coefficients, but no attempt was made in references [1-15] to solve it in the classical way; for example, by the method of Frobenius [18]. Naguleswaran [19] (a reference that lists a number of publications in which the centrifugal force distribution was tensile) used the method of Frobenius to solve the mode shape differential equation of a uniform Euler-Bernoulli beam attached radially to the outside of a rotating hub. This method is applied in the present paper. Some phenomena which occur in the problem discussed in the present paper are not mentioned in reference [19]. The six sets of boundary conditions are combinations of clamped (cl) or pinned (pn) at the rim end and clamped, pinned or free (fr) at the other end. The first three natural frequencies in dimensionless form for various combinations of the root offset parameter and speed of rotation are presented in tabular form to preserve the accuracy to four places after the decimal place. Graphs of the variation of the first two natural frequencies with rotational speed are presented for selected values of the root offset parameter. The "tuned" state (if any), i.e., when a rotational speed and a natural frequency coincide, are tabulated. Gyroscopic instruments for measuring the angular rates of turn based on this "tuned" state of a cantilever have been patented and are referred to in references [7, 11]. The critical rotational speed (if any) at which a natural frequency is zero (the Euler buckling condition) are tabulated for various root offset parameters. Some of the conclusions in past publications are shown to be erroneous. The "tuned" state and buckling do not occur in the problem discussed in reference [19].

Figure 1. (a) Axially restrained (root) and (b) axially unrestrained boundaries.

2. THEORETICAL CONSIDERATIONS

Ideally clamped and pinned supports which are axially restrained or unrestrained are shown in Figure 1. Consider a uniform Euler-Bernoulli beam of flexural rigidity, $E I$, mass per unit length m and length l. In Figure 2 are shown the various positions at which the beam can be attached radially at a root offset radius R_{0} from an axis rotating at a constant speed p. The origin is chosen at the point of attachment - the left end in the figure. The right end is radially unrestrained. The natural frequency of out-of-plane vibration of the beam shown in positions (a) and (b) of Figure 2 are tabulated in reference [19]. In the present paper positions (c)-(g) are considered. For position (a), the radial force $T(x)$ due to the centrifugal field at co-ordinate x is (a list of notation is given in Appendix B)

$$
\begin{equation*}
T(x)=0 \cdot 5 m p^{2}\left(l^{2}+2 l R_{0}-2 R_{0} x-x^{2}\right) . \tag{1}
\end{equation*}
$$

$T(x)$ is positive for tensile force and negative for compressive force. Equation (1) is applicable for the positions (c)-(g) of Figure 2, provided that R_{0} is considered negative in these positions.

For out-of-plane natural vibration at frequency ω, if at co-ordinate x the amplitude of deflection, bending moment and transverse shearing force normal to the plane of rotation are $y(x), M(x)$ and $Q(x)$, then

$$
\begin{equation*}
M(x)=E I \mathrm{~d}^{2} y(x) / \mathrm{d} x^{2}, \quad Q(x)=-\mathrm{d} M(x) / \mathrm{d} x+T(x) \mathrm{d} y(x) / \mathrm{d} x \tag{2,3}
\end{equation*}
$$

The mode shape differential equation is

$$
\begin{equation*}
\mathrm{d} Q(x) / \mathrm{d} x+m \omega^{2} y(x)=0 . \tag{4}
\end{equation*}
$$

The derivation of equations (1-4) is given in Appendix A. The variables are expressed in dimensionless form as follows: the axial co-ordinate X, deflection $Y(X)$, the operator D,

Figure 2. Positive and negative root offset parameters ρ_{0}.
the root offset parameter ρ_{0}, the rotational speed η, the tension $\beta(X)$, the natural frequency Ω, the bending moment $M(X)$ and shearing force $Q(X)$:

$$
\begin{align*}
& X=x / l, \quad Y(X)=y(x) / l, \quad D=\mathrm{d} / \mathrm{d} X, \quad \rho_{0}=R_{0} / l, \quad \eta^{2}=m p^{2} l^{4} / E I, \\
& \beta(X)=T(x) l^{2} E I, \quad \Omega^{2}=m \omega^{2} l^{4} / E I, \quad M(X)=M(x) l / E I, \quad Q(X)=Q(x) l^{2} / E I . \tag{5}
\end{align*}
$$

The dimensionless radial force distribution due to the centrifugal field is

$$
\begin{equation*}
\beta(X)=0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}-2 \rho_{0} X-X^{2}\right) \tag{6}
\end{equation*}
$$

Equations (2) and (3) in dimensionless form are

$$
\begin{equation*}
M(X)=D^{2} Y(X), \quad Q(X)=-D^{3} Y(X)+\beta(X) D Y(X) \tag{7,8}
\end{equation*}
$$

The dimensionless mode shape differential equation is

$$
\begin{align*}
& D^{4} Y(X)-0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}\right) D^{2} Y(X)+\eta^{2} \rho_{0} D[X D Y(X)] \\
& \quad+0 \cdot 5 \eta^{2} D\left[X^{2} D Y(X)\right]-\Omega^{2} Y(X)=0 \tag{9}
\end{align*}
$$

Equation (9) with the boundary conditions is an eigenvalue problem. The six combinations of the boundary conditions considered in this paper are $\mathrm{cl}-\mathrm{cl}, \mathrm{pn}-\mathrm{pn}, \mathrm{cl}-\mathrm{pn}, \mathrm{pn}-\mathrm{cl}, \mathrm{cl}-\mathrm{fr}$ and $\mathrm{pn}-\mathrm{fr}$ (the first abbreviation denotes the boundary condition at the radially restrained end). The other combinations ($\mathrm{fr}-\mathrm{cl}$, $\mathrm{fr}-\mathrm{pn}$ and $\mathrm{fr}-\mathrm{fr}$) are not of interest in engineering.

2.1. THE SOLUTION OF THE MODE SHAPE EQUATION

By following the method of Frobenius [18], the mode shape differential equation is found to have a solution of the form

$$
\begin{equation*}
F(X, c)=X^{c} \sum a_{n+1}(c) X^{n}, \quad n=0,1,2, \ldots, \infty, \tag{10}
\end{equation*}
$$

in which the undetermined exponent c is the root of the indicial equation

$$
\begin{equation*}
c(c-1)(c-2)(c-3)=0 \tag{11}
\end{equation*}
$$

and the coefficients $a_{n+1}(c)$ satisfy the recurrence relationship

$$
\begin{align*}
(c+n)(c & +n-1)(c+n-2)(c+n-3) a_{n+1}(c)=0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}\right) \\
& \times(c+n-2)(c+n-3) a_{n-1}(c) \\
& +\eta^{2} \rho_{0}(c+n-3)^{2} a_{n-2}(c)+\left[0 \cdot 5 \eta^{2}(c+n-4)(c+n-3)-\Omega^{2}\right] a_{n-3}(c) . \tag{12}
\end{align*}
$$

In equation (12), $a_{1}(c)=1$ (arbitrary choice) and $a_{m}=0$ for $m \leqslant 0$. The derivatives of $F(X, c)$ are

$$
\begin{aligned}
& D F(X, c)=X^{c-1} \sum(c+n) a_{n+1}(c) X^{n} \\
& D^{2} F(X, c)=X^{c-2} \sum(c+n)(c+n-1) a_{n+1}(c) X^{n} \text { and } \\
& D^{3} F(X, c)=X^{c-3} \sum(c+n)(c+n-1)(c+n-2) a_{n+1}(c) X^{n} .
\end{aligned}
$$

It is possible to compute the function $F(X, c)$ and the three derivatives progressively on a term-by-term basis. The four solution functions are

$$
\begin{equation*}
F(X, 0)=1+0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}\right) X^{2} / 2+\sum a_{n+5}(0) X^{n+4} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& F(X, 1)=X+0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}\right) X^{3} / 6-\eta^{2} \rho_{0} X^{4} / 24+\sum a_{n+5}(1) X^{n+5} \tag{14}\\
& F(X, 2)=X^{2}+0 \cdot 5 \eta^{2}\left(1+2 \rho_{0}\right) X^{4} / 12-\eta^{2} \rho_{0} X^{5} / 30+\sum a_{n+5}(2) X^{n+6} \tag{15}\\
& F(X, 3)=X^{3}+0 \cdot 5 \eta^{3}\left(1+2 \rho_{0}\right) X^{5} / 20-\eta^{2} \rho_{0} X^{6} / 40+\sum a_{n+5}(3) X^{n+7} \tag{16}
\end{align*}
$$

The four solution functions are clearly independent and hence the general solution of the mode shape differential equation is

$$
\begin{equation*}
Y(X)=C_{1} F(X, 0)+C_{2} F(X, 1)+C_{3} F(X, 2)+C_{4}(X, 3) . \tag{17}
\end{equation*}
$$

The constants of integration C_{1}, C_{2}, C_{3} and C_{4} are determined from the boundary conditions. For a clamped attachment, $Y(0)=0=D Y(0)$. The mode shape function equation is

$$
\begin{equation*}
Y(X)=C_{3} F(X, 2)+C_{4} F(X, 3) \tag{18}
\end{equation*}
$$

For a pinned attachment, $Y(0)=0=D^{2} Y(0)$. The mode shape function equation is

$$
\begin{equation*}
Y(X)=C_{2} F(X, 1)+C_{4} F(X, 3) \tag{19}
\end{equation*}
$$

If at the axially unrestrained end $X=1$ the beam is clamped, then $Y(1)=0=D Y(1)$: if pinned, $Y(1)=0=D^{2} Y(1)$, and if free, $D^{2} Y(1)=0=D^{3} Y(1)$. The frequency equations for $\mathrm{cl}-\mathrm{cl}, \mathrm{cl}-\mathrm{pn}, \mathrm{cl}-\mathrm{fr}, \mathrm{pn}-\mathrm{cl}, \mathrm{pn}-\mathrm{pn}$ and $\mathrm{pn}-\mathrm{fr}$ beams are as follow:
cl-cl: $\quad F(1,2) D F(1,3)-D F(1,2) F(1,3)=0$,
cl-pn:

$$
\begin{equation*}
F(1,2) D^{2} F(1,3)-D^{2} F(1,2) F(1,3)=0 \tag{20}
\end{equation*}
$$

cl-fr:

$$
\begin{equation*}
D^{2} F(1,2) D^{3} F(1,3)-D^{3} F(1,2) D^{2} F(1,3)=0 \tag{21}
\end{equation*}
$$

pn-cl: $\quad F(1,1) D F(1,3)-D F(1,1) F(1,3)=0$,
pn-pn: $\quad F(1,1) D^{2} F(1,3)-D^{2} F(1,1) F(1,3)=0$,
pn-fr: $\quad D^{2} F(1,1) D^{3} F(1,3)-D^{3} F(1,1) D^{2} F(1,3)=0$.

Figure 3. The axial centrifugal force distribution for various values of the root offset parameter ρ_{0}.

Table 1

The first three dimensionless natural frequencies for $\mathrm{cl}-\mathrm{cl}$ and for $\mathrm{pn}-\mathrm{pn}$ uniform beams under centrifugal compression for various combinations of the rotational speed parameter η and the root offset parameter ρ_{0}

	η	cl-cl beams				pn-pn beam			
		${ }_{\rho_{0}=-0 \cdot 1}$	$\rho_{0}=-0 \cdot 5$	$\rho_{0}=-1.0$	$\rho_{0}=-1.5$	$\overbrace{0}=-0 \cdot 1$	$\rho_{0}=-0.5$	$\rho_{0}=-1 \cdot 0$	$\rho_{0}=-1.5$
Ω_{1}	0	22.3733	22.3733	22.3733	22.3733	9.8696	9.8696	9.8696	9.8696
	1	22.4516	$22 \cdot 3967$	22.3279	22.2589	9.9977	$9 \cdot 8986$	9.7730	$9 \cdot 6454$
	2	22.6844	$22 \cdot 4669$	$22 \cdot 1911$	21.9108	10.3711	9.9848	9.4748	9.9293
	3	23.0658	22.5831	21.9602	21.3138	10.9612	$10 \cdot 1268$	8.9476	$7 \cdot 5458$
	4	$23 \cdot 5869$	22.7445	21.6309	20.4386	11.7306	10.3218	$8 \cdot 1320$	$4 \cdot 8480$
	5	24.2362	22.9497	21.1965	19.2354	12.6408	$10 \cdot 5664$	$6 \cdot 8998$	ccc
	6	25.0009	23-1971	$20 \cdot 6474$	17.6180	13.6581	$10 \cdot 8568$	$4 \cdot 8852$	ccc
	7	25.8678	$23 \cdot 4850$	19.9703	15.4254	14.7551	11.1888	ccc	ccc
	8	26.8237	$23 \cdot 8112$	19.1463	12.2963	15.9109	11.5582	ccc	ccc
	9	$27 \cdot 8565$	$24 \cdot 1736$	18.1484	6.9259	$17 \cdot 1096$	11.9607	ccc	ccc
	10	28.9547	24.5700	16.9360	ccc	18.3397	12.3924	ccc	ccc
	11	30.1084	24.9979	$15 \cdot 4453$	ccc	19.5928	$12 \cdot 8496$	ccc	ccc
	12	$31 \cdot 3088$	$25 \cdot 4551$	$13 \cdot 5646$	ccc	20.8627	$13 \cdot 3290$	ccc	ccc
	13	$32 \cdot 5483$	25.9393	11.0650	ccc	$22 \cdot 1449$	13.8274	ccc	ccc
	14	33.8204	$26 \cdot 4482$	$7 \cdot 2729$	ccc	23.4362	14.3424	ccc	ccc
	15	$35 \cdot 1196$	26.9798	ccc	ccc	24.7340	14.8713	ccc	ccc
Ω_{2}	0	61.6728	61.6728	61.6728	61.6728	39.4784	$39 \cdot 4784$	$39 \cdot 4784$	39.4784
	1	$61 \cdot 7830$	61.7085	61.6151	61.5216	39.6167	$39 \cdot 5169$	$39 \cdot 3918$	$39 \cdot 2662$
	2	$62 \cdot 1122$	61.8152	$61 \cdot 4414$	61.0648	$40 \cdot 0282$	$39 \cdot 6321$	$39 \cdot 1303$	38.6208
	3	$62 \cdot 6563$	61.9926	$61 \cdot 1503$	60.2932	40.7038	39.8232	38.6890	37.5148
	4	$63 \cdot 4085$	$62 \cdot 2400$	$60 \cdot 7392$	59•1905	41.6292	$40 \cdot 0890$	38.0593	35.8977

37.2289	33.6885
36.1802	$30 \cdot 7641$
$34 \cdot 8907$	26.9469
$33 \cdot 3311$	22.0179
31.4659	15.7586
$29 \cdot 2546$	6.8693
$26 \cdot 6588$	ccc
23.6576	ccc
$20 \cdot 2642$	ccc
16.4992	ccc
12.2162	ccc
88.8264	88.8264
88.7416	88.6164
88.4866	87.9825
88.0592	86.9133
87.4559	85.3889
86.6719	83.3798
85.7004	$80 \cdot 8453$
84.5334	$77 \cdot 9647$
83.1605	73.9647
81.5697	$69 \cdot 4560$
79.7466	$64 \cdot 0906$
77.6750	$57 \cdot 7296$
75.3361	50.2043
69.7739	$30 \cdot 5662$
69.7739	$30 \cdot 5662$
$66 \cdot 5075$	$16 \cdot 8810$

Table 2

	cl-pn beams					pn-cl beam			
	η	$\rho_{0}=-0 \cdot 1$	$\rho_{0}=-0 \cdot 5$	$\rho_{0}=-1 \cdot 0$	$\rho_{0}=-1 \cdot 5$	$\rho_{0}=-0 \cdot 1$	$\rho_{0}=-0.5$	$\rho_{0}=-1 \cdot 0$	$\rho_{0}=-1 \cdot 5$
Ω_{1}	0	15.4182	15.4182	15.4182	15.4182	15.4182	15.4182	$15 \cdot 4182$	15.4182
	1	15.4991	15.4437	15.3741	$15 \cdot 3040$	15.5368	15.4437	$15 \cdot 3262$	$15 \cdot 2075$
	2	15.7391	$15 \cdot 5199$	$15 \cdot 2406$	14.9551	15.8862	15.5199	$15 \cdot 0452$	$14 \cdot 5498$
	3	$16 \cdot 1299$	$15 \cdot 6458$	15.0145	14.3503	16.4481	15.6458	$14 \cdot 5585$	$13 \cdot 3531$
	4	16.6592	$15 \cdot 8199$	14.6901	13.4476	$17 \cdot 1966$	15.8199	$13 \cdot 8341$	$11 \cdot 3908$
	5	$17 \cdot 3122$	$16 \cdot 0404$	$14 \cdot 2584$	$12 \cdot 1679$	$18 \cdot 1026$	$16 \cdot 0404$	$12 \cdot 8145$	7.9798
	6	18.0730	$16 \cdot 3049$	13.7061	$10 \cdot 3493$	$19 \cdot 1371$	$16 \cdot 3049$	$11 \cdot 3925$	ccc
	7	18.9262	$16 \cdot 6106$	13.0133	$7 \cdot 5670$	$20 \cdot 2470$	$16 \cdot 6106$	$9 \cdot 3367$	ccc
	8	$19 \cdot 8571$	16.9547	12.1499	ccc	21.4912	16.9547	5.9178	ccc
	9	$20 \cdot 828$	$17 \cdot 3342$	11.0669	ccc	22.7704	17.3342	ccc	ccc
	10	21.9021	$17 \cdot 7462$	$9 \cdot 6775$	cce	24.0971	$17 \cdot 7462$	ccc	ccc
	11	22.9954	$18 \cdot 1877$	7.7979	cce	25.4601	$18 \cdot 1877$	ccc	ccc
	12	$24 \cdot 1247$	$18 \cdot 6558$	$4 \cdot 8444$	ccc	26.8505	$18 \cdot 6558$	ccc	ccc
	13	$25 \cdot 2835$	$19 \cdot 1479$	ccc	ccc	28.2615	$19 \cdot 1479$	ccc	ccc
	14	26.4663	$19 \cdot 6614$	ccc	ccc	29.6881	$19 \cdot 6614$	ccc	ccc
	15	27.6687	$20 \cdot 1939$	ccc	ccc	$31 \cdot 1261$	$20 \cdot 1939$	ccc	ccc
Ω_{2}	0	49.9649	49.9649	49.9649	49.9649	49.9649	49.9649	$49 \cdot 9649$	49.9649
	1	$50 \cdot 0751$	$50 \cdot 0015$	49.9093	49.8170	$50 \cdot 0993$	$50 \cdot 0015$	$49 \cdot 8789$	$49 \cdot 7560$
	2	50.4041	$50 \cdot 1113$	$49 \cdot 7422$	$49 \cdot 3698$	$50 \cdot 5003$	$50 \cdot 1113$	$49 \cdot 6199$	$49 \cdot 1227$
	3	$50 \cdot 9469$	$50 \cdot 2935$	$49 \cdot 4619$	48.6127	51.1608	$50 \cdot 2935$	$49 \cdot 1839$	$48 \cdot 0442$
	4	$51 \cdot 6956$	$50 \cdot 5474$	$49 \cdot 0653$	$47 \cdot 5262$	52.0697	$50 \cdot 5474$	$48 \cdot 5645$	$46 \cdot 4837$

As Table 1, but for cl-fr and for $\mathrm{pn}-\mathrm{fr}$ beams

		cl-fr beams				pn -fr beam			
	η	$\rho_{0}=-0 \cdot 1$	$\rho_{0}=-0 \cdot 5$	$\rho_{0}=-1.0$	$\rho_{0}=-1 \cdot 5$	$\rho_{0}=-0 \cdot 1$	$\rho_{0}=-0.5$	$\rho_{0}=-1.0$	$\rho_{0}=-1.5$
Ω_{1}	0	$3 \cdot 5160$	$3 \cdot 5160$	3.5160	$3 \cdot 5160$	$0.00 \dagger$	$0.00 \dagger$	$0.00 \dagger$	$0.00 \dagger$
	1	$3 \cdot 6603$	$3 \cdot 5735$	$3 \cdot 4619$	$3 \cdot 3465$	0.9219	0.4996	ccc	ccc
	2	$4 \cdot 0610$	$3 \cdot 7398$	3.2938	2.7761	1.8438	$0 \cdot 9965$	ccc	ccc
	3	$4 \cdot 6489$	3.9993	$2 \cdot 9916$	$1 \cdot 3694$	2.7656	1.4885	ccc	ccc
	4	5.3584	4.3323	$2 \cdot 5047$	ccc	3.6873	1.9738	ccc	ccc
	5	6.1435	4.7196	1.6743	ccc	$4 \cdot 6090$	$2 \cdot 4510$	ccc	ccc
	6	6.9751	$5 \cdot 1453$	ccc	ccc	$5 \cdot 5305$	2.9195	ccc	ccc
	7	$7 \cdot 8357$	5.5972	ccc	ccc	$6 \cdot 4520$	3.3793	ccc	ccc
	8	8.7147	$6 \cdot 0661$	ccc	ccc	$7 \cdot 3734$	$3 \cdot 8306$	ccc	ccc
	9	$9 \cdot 6057$	6.5456	ccc	ccc	$8 \cdot 2949$	$4 \cdot 2740$	ccc	ccc
	10	$10 \cdot 5048$	$7 \cdot 0311$	ccc	ccc	$9 \cdot 2163$	$4 \cdot 7102$	ccc	ccc
	11	$11 \cdot 4092$	$7 \cdot 5195$	ccc	ccc	$10 \cdot 1377$	$5 \cdot 1399$	ccc	ccc
	12	$12 \cdot 3175$	8.0087	ccc	ccc	11.0590	$5 \cdot 5638$	ccc	ccc
	13	13.2285	8.4973	ccc	ccc	11.9804	5.9826	ccc	ccc
	14	$14 \cdot 1416$	8.9844	ccc	ccc	12.9018	6.3970	ccc	ccc
	15	15.0561	9.4695	ccc	ccc	13.8232	$6 \cdot 8073$	ccc	ccc
Ω_{2}	0	22.0345	22.0345	22.0345	22.0345	15.4182	15.4182	15.4182	15.4182
	1	$22 \cdot 1615$	22.0833	21.9852	21.8866	15.5947	$15 \cdot 4761$	$15 \cdot 3263$	$15 \cdot 1749$
	2	22.5384	22.2293	21.8364	21.4360	16.1124	$15 \cdot 6484$	15.0462	14.4163
	3	$23 \cdot 1530$	22.4706	21.5854	$20 \cdot 6601$	16.9391	15.9317	14.5641	13.0408
	4	23.9872	$22 \cdot 8044$	21.2272	$19 \cdot 5152$	18.0312	$16 \cdot 3205$	13.8544	$10 \cdot 8012$
	5	$25 \cdot 0191$	$23 \cdot 2270$	20.7545	17.9221	$19 \cdot 3423$	$16 \cdot 8076$	12.8751	7.0205

It was shown in reference [19] that if $\rho_{0} \geqslant 0$ then $\beta(X) \geqslant 0$ and the natural frequency Ω increased with increase in the rotational speed η, and that a rotational speed does not exist for which $\Omega=\eta$. The present paper is a study of the influence of negative ρ_{0} on the out-of-plane vibration. From equation (6), the variation of $2 \beta(X) / \eta^{2}$ with X for various values of ρ_{0} is shown in Figure 3. It is clear that $\beta(X)>0$ for $0>\rho_{0}>-0.5$ and hence, in this range of the root offset parameter, one can expect Ω to increase with η. A feature in the root offset parameter range $-1.0<\rho_{0}<-0.5$ is the centrifugal force distribution being compressive up to $X=-\left(1+2 \rho_{0}\right)$ and tensile in the remainder of the beam. If the root offset parameter $\rho_{0}=-2 / 3$, the total centrifugal force acting on the beam is zero. If $\rho_{0} \leqslant-1 \cdot 0$, the centrifugal force distribution is compressive up to $X=1$. A necessary (but not sufficient) condition for an out-of-plane natural frequency to decrease with increase in rotational speed is $\rho_{0}<-0 \cdot 5$; i.e., part of the beam must be under centrifugal compression.

The roots of the frequency equations (20)-(25) were determined as follows. An initial trial and error search provided a narrow range for an approximate root. This was followed by an iterative procedure based on linear interpolation as described in reference [19]. The first three dimensionless (out-of-plane) natural frequencies Ω_{1}, Ω_{2} and Ω_{3} for combinations of $\rho_{0}=-0 \cdot 1,-0 \cdot 5,-1 \cdot 0$ and $-1 \cdot 5\left(\rho_{0}=0 \cdot 0\right.$ is found in reference [19]) and η is the range 0 to 15 are tabulated in Table 1 for $\mathrm{cl}-\mathrm{cl}$ and $\mathrm{pn}-\mathrm{pn}$ beams, Table 2 for $\mathrm{cl}-\mathrm{pn}$ and $\mathrm{pn}-\mathrm{cl}$ beams, and Table 3 for cl-fr and pn-fr beams. The tabulation in Table 2 show that the natural frequency depends not only on the boundary conditions but also on which part of the boundary is radially restrained. For $\rho_{0}=-0 \cdot 5$, the frequency columns for cl-pn and $\mathrm{pn}-\mathrm{cl}$ beams are identical because, at this root offset, the centrifugal tension distribution is symmetrical. All of the frequency calculations in Tables $1-3$ were in double precision on a VAX computer. Single precision calculation of the various functions in the frequency equations did not meet the accuracy required and, as a resullt, the iterative procedure failed. It was found that for some combinations of ρ_{0} and η outside the parameters in the tables, double precision computing failed but quadruple precision computing succeeded, and for certain combinations even quadruple precision computing failed.

In Figures 4-6, the variation of Ω_{1} and Ω_{2} with η for the six combinations of boundary conditions are presented for selected (negative) values of ρ_{0} with a view to determine the "border" root offset parameter at which Ω decreased or commenced to decrease with increase in η. White et al. [8] surmised that for a cl-fr beam this will happen if $\rho_{0}=-0 \cdot 5-\epsilon$, even if ϵ is very small but η is sufficiently large. The cl-fr beam frequency column in Table 3 for $\rho_{0}=-0.5$ and calculations with $\rho_{0}=-0.65$ (in Figure 6) show that Ω monotonically increased with η. Wang [4] investigated the same problem and suggested that the "border" $\rho_{0}=-0.778$. The cl-fr beam first mode frequency variation shown in Figure 6 shows that the Wang suggestion is in error. In reference [7] it was suggested that if $\rho_{0}=-0 \cdot 64, \Omega$ increases with η and if $\rho_{0}=-0 \cdot 66, \Omega$ decreases with η if $\eta>14$. Kammer and Schlack [13] suggested the "border" $\rho_{0}=-0 \cdot 642$. Presently, analytical technique is not available to predict this "border" root offset parameter. The "border" root offset parameters tabulated in Table 4 were obtained numerically-the criterion used is that in the range $15<\eta<20$, the variation in Ω is less than 0.5%.

From Figures $4-6$, it is possible to derive the conditions for a natural frequency to coincide with the rotational speed. Fox and Burdess [7] called this a "tuned" state and calculated (by the Galerkin procedure) the "tuned" rotational speeds of a cantilever. (A stroboscope will show a "frozen" no-node cantilever at the first "tuned" rotational

Figure 4. The variation of the first two dimensionless natural frequencies of $\mathrm{cl}-\mathrm{cl}$ and of $\mathrm{pn}-\mathrm{pn}$ beams with rotational speed η for various negative root offset parameters ρ_{0}. The broken line is the estimated "border" root offset parameter. (a) cl-cl mode 1; (b) cl-cl mode 2; (c) pn-pn mode 1; (d) pn-pn mode 2.

Figure 5. As Figure 4, but for $\mathrm{cl}-\mathrm{pn}$ and of $\mathrm{pn}-\mathrm{cl}$ beams, respectively.

Figure 6. As Figure 4, but for $\mathrm{cl}-\mathrm{fr}$ and of $\mathrm{pn}-\mathrm{fr}$ beams, respectively.
speed $\eta_{t 1}$, a "frozen" one-mode cantilever at the second "tuned" speed η_{12} and so on.) Provided that the system is ideal, there is nothing special in this phenomena. However, an imperfection such as a slight tilt in the "circular" path of the attachment will cause a displacement excitation at the rim end which will result in a dangerous resonance response. A small radial eccentricity in the attachment may cause parametric instability, but this falls outside the scope of this paper. The differential equation to be solved for the "tuned" rotational speed η_{t} is

$$
\begin{equation*}
D^{4} Y(X)-\eta_{t}^{2}\left\{0 \cdot 5\left(1+2 \rho_{0}\right) D^{2} Y(X)-\rho_{0} D[X D Y(X)]-0 \cdot 5 D\left[X C^{2} D Y(X)\right]-Y(X)\right\}=0 . \tag{26}
\end{equation*}
$$

This equation subject to the boundary conditions forms an eigenvalue problem. The eigenvalues (viz., η_{t}^{2}) if negative indicate that "tuned" rotational speeds do not exist. The "tuned" rotational speed equations are of the same form as equations (20)-(25) and the roots are calculated by the iterative procedure. In Table 5, the first two "tuned" rotational speeds for the six combinations of boundary conditions are tabulated. Results published

Table 4
The estimated "border" root offset parameter ρ_{0} at which Ω just tends to decrease with increase in η

	The "border" root offset parameter					
	cl-cl	$\mathrm{pn}-\mathrm{pn}$	$\mathrm{cl}-\mathrm{pn}$	$\mathrm{pn}-\mathrm{cl}$	$\mathrm{cl}-\mathrm{fr}$	$\mathrm{pn}-\mathrm{fr}$
Mode 1	-0.664	-0.606	-0.675	-0.601	-0.689	-0.583
Mode 2	-0.687	-0.652	-0.695	-0.645	-0.743	-0.686

Table 5
The first two dimensionless "tuned" rotational speeds $\eta_{t 1}$ and η_{12} for various root offset parameters ρ_{0}

	ρ_{0}	$\mathrm{cl}-\mathrm{cl}$	pn-pn	cl-pn	pn-cl	cl-fr	cl-fr \dagger	pn-fr
$\eta_{t 1}$	-0.60	nc	$10 \cdot 1430$	18.6818	15.4280	$4 \cdot 0450$	[7]	***
	-0.70	19.9604	8•1641	14.6553	11.5957	3.6845		***
	$-0 \cdot 80$	$16 \cdot 2356$	$7 \cdot 0124$	$12 \cdot 4002$	9.6548	$3 \cdot 4048$	$3 \cdot 5$	***
	-0.90	13.9979	$6 \cdot 2391$	10.9276	8.4404	$3 \cdot 1798$	$3 \cdot 2$	***
	-1.00	12.4756	$5 \cdot 6747$	$9 \cdot 8741$	$7 \cdot 5908$	2.9939	$3 \cdot 0$	***
	-1.25	$10 \cdot 1275$	$4 \cdot 7412$	8-1687	$6 \cdot 2421$	2.6417	$2 \cdot 7$	***
	-1.50	8.7414	$4 \cdot 1547$	7-1191	$5 \cdot 4244$	$2 \cdot 3899$	$2 \cdot 5$	***
	-2.00	$7 \cdot 1113$	$3 \cdot 4332$	5.8484	4.4440	$2 \cdot 0466$	$2 \cdot 1$	***
	-2.50	$6 \cdot 1467$	2.9913	5.0799	$3 \cdot 8550$	1.8183	1.9	***
	-3.00	$5 \cdot 4912$	$2 \cdot 6853$	$4 \cdot 5516$	$3 \cdot 4514$	1.6265	1.7	**
	-3.50	$5 \cdot 0087$	$2 \cdot 4573$	$4 \cdot 1598$	$3 \cdot 1527$	1.5251	$1 \cdot 5$	***
η_{12}	-0.60	**	**	**	**	25.3553	-	$23 \cdot 1133$
	-0.70	nc	nc	nc	nc	22.4471	-	14.5606
	-0.80	26.2756	$20 \cdot 1414$	28.2742	23.7398	17.7401	$19 \cdot 5$	$10 \cdot 8683$
	-0.90	22.5734	$16 \cdot 6347$	$21 \cdot 2628$	19.2517	$14 \cdot 1632$	$15 \cdot 5$	$9 \cdot 0167$
	-1.00	20.5770	14.4902	18.7760	16.7170	$12 \cdot 1171$	$12 \cdot 3$	$7 \cdot 8655$
	-1.25	$16 \cdot 0406$	11.4359	14.5170	$13 \cdot 1366$	9.3777	$9 \cdot 5$	6.2174
	-1.50	13.5181	9.7425	12.2347	11.1673	7.9283	$8 \cdot 1$	$5 \cdot 3001$
	-2.00	10.7517	$7 \cdot 8283$	9.7392	8.9538	6.3329	$6 \cdot 6$	$4 \cdot 2609$
	-2.50	$9 \cdot 1933$	6.7265	8.3293	7.6852	$5 \cdot 4294$	$5 \cdot 6$	$3 \cdot 6619$
	-3.00	8-1 1 610	5.9883	$7 \cdot 3949$	6.8375	4.8284	$5 \cdot 0$	$3 \cdot 2604$
	$-3 \cdot 50$	$7 \cdot 4130$	5.4497	$6 \cdot 7176$	$6 \cdot 2198$	$4 \cdot 3915$	$4 \cdot 5$	$2 \cdot 9674$

\dagger From reference [7]
**, Expected to be large; nc, not calculated; ${ }^{* * *}$, does not exist.
Table 6
The first two dimensionless critical rotational speeds $\eta_{c 1}$ and $\eta_{c 2}$ for various root offset parameters ρ_{0}

	ρ_{0}	$\mathrm{cl}-\mathrm{cl}$	pn-pn	cl-pn	pn-cl	$\mathrm{cl}-\mathrm{fr}$	cl-fr \dagger		pn-fr
$\eta_{c 1}$	$-0 \cdot 60$	**	**	**	**	**	[7]	[8]	$15 \cdot 4740$
	-0.70	$26 \cdot 1675$	nc	nc	$16 \cdot 2418$	$30 \cdot 3746$	17.0	$20 \cdot 0$	us
	-0.80	22.0247	9.5931	$19 \cdot 3454$	11.9450	11.1689	11.5	$10 \cdot 3$	us
	-0.90	17.3370	$7 \cdot 8635$	14.9521	$9 \cdot 8563$	$7 \cdot 2842$	$7 \cdot 3$	$7 \cdot 6$	us
	-1.00	14.6849	$6 \cdot 8175$	12.5684	8.5747	$5 \cdot 6747$	$5 \cdot 6$	$5 \cdot 6$	us
	-1.25	11.2122	$5 \cdot 3506$	9.1563	6.7573	$3 \cdot 9900$	$4 \cdot 0$	$4 \cdot 0$	us
	-1.50	9.4111	$4 \cdot 5469$	7.9597	5.7527	$3 \cdot 2566$	$3 \cdot 3$	$3 \cdot 3$	us
	-2.00	$7 \cdot 4581$	$3 \cdot 6468$	$6 \cdot 2883$	$4 \cdot 6193$	$2 \cdot 5159$	$2 \cdot 6$	$2 \cdot 6$	us
	-2.50	6.3664	$3 \cdot 1282$	5•3602	$3 \cdot 9678$	2.1237	$2 \cdot 1$	-	us
	-3.00	$5 \cdot 6461$	$2 \cdot 7830$	$4 \cdot 7499$	$3 \cdot 5316$	1.8715	1.9	-	us
	-3.50	5•1254	2.5316	$4 \cdot 3095$	$3 \cdot 2135$	$1 \cdot 6920$	$1 \cdot 7$	-	us
$\eta_{c 2}$	-0.60	**	**	**	**	**	-	-	**
	-0.70	nc	nc	nc	nc	nc	-	-	nc
	$-0 \cdot 80$	39.0749	nc	nc	nc	nc	-	-	nc
	-0.90	29.4798	19.6179	21.7319	21.5223	18.8993	18.0	-	12.7412
	-1.00	21.3070	16.3911	19.8684	18.3496	14.4902	$14 \cdot 7$	-	9.8741
	-1.25	16.6548	12.3124	$15 \cdot 2223$	13.8924	$10 \cdot 3118$	$10 \cdot 5$	-	7-0076
	-1.50	13.8791	$10 \cdot 2687$	12.6517	11.6210	8.4707	$8 \cdot 4$	-	$5 \cdot 7462$
	-2.00	10.9303	8.0939	9.9417	9. 1826	$6 \cdot 6049$	$6 \cdot 7$	-	$4 \cdot 4745$
	-2.50	$9 \cdot 3040$	6.8926	8.4545	$9 \cdot 8283$	$5 \cdot 6009$	$5 \cdot 6$	-	$3 \cdot 7926$
	-3.00	8.2381	6.1048	$7 \cdot 4820$	6.9376	$4 \cdot 9494$	$5 \cdot 0$	-	3.3507
	-3.50	$7 \cdot 4706$	$5 \cdot 5371$	$6 \cdot 7826$	$6 \cdot 2949$	$4 \cdot 4828$	$4 \cdot 5$	-	1.9938

\dagger From references [7, 8].
**, Expected to be large; nc, not calculated; us, unstable.
on "tuned" frequencies are for cl-fr beams and values from graph of η_{t} versus ρ_{0} from reference [7] (Galerkin method) are included in Table 5 for comparison. Where $\eta_{t}>20$, the values were not calculated and this is shown by $n c$, and the values shown by ** (if they exist) are expected to be very large.

For the combinations of ρ_{0} and η for which Ω decreases with increase in η, a critical η_{c} exists for which a natural frequency is zero, and the beam will buckle at this mode. The differential equation to be solved is

$$
\begin{equation*}
D\left\{D^{3} Y(X)-\eta_{c}^{2}\left[0 \cdot 5\left(1+2 \rho_{0}\right) D Y(X)-\rho_{0} X D Y(X)-0 \cdot 5 X^{2} D Y(X)\right]\right\}=0 \tag{27}
\end{equation*}
$$

This equation, together with the boundary conditions, forms an eigenvalue problem and the buckling speed equations are of the same form as equations (20)-(25). The first two buckling speeds for the six combinations of the boundary are tabulated in Table 6. Included in Table 6 are results for cl-fr beams from graphs in references [7] and [8]. Where $\eta_{c}>20$, calculations were not done and this is shown by $n c$ and if buckling is unlikely or if η_{c} is expected to be very large, are shown by ${ }^{* *}$.

4. CONCLUSIONS

The first three dimensionless natural frequencies for out-of-plane vibration of a uniform Euler-Bernoulli beam attached to the inside of a rotating rim have been tabulated for six combinations of clamped, pinned and free boundary conditions and for various values of the root offset parameter. For $\rho_{0} \geqslant-0.5$ the centrifugal axial force distribution is tensile and Ω increases with increase in η. For $-1.0<\rho_{0}<-0.5$ the axial force distribution is partly compressive. For $\rho_{0}=-0 \cdot 5-\epsilon$, where ϵ is small, Ω increased with moderate increase in η and one would expect the frequency to decrease if η is large but the precision with which the computer operated precluded verification. If ϵ is not small, Ω decreases monotonically. For $\rho_{0}<-1 \cdot 0$, the centrifugal force distribution is compressive and Ω decreases monotonically. The above aspects are illustrated in Figures 4-6. For $\eta<20$, the first two "border" root offset parameters obtained numerically are presented in Table 4.

A "tuned" state is possible when $\Omega=\eta$. Imperfections may lead to dangerous resonance and hence the "tuned" state must be avoided. Some values of "tuned" rotational speeds are presented in Table 5.

For certain combinations of ρ_{0} and η, a frequency may be zero, resulting in buckling of the beam. Some values of the critical rotational speeds are presented in Table 6.

REFERENCES

1. N. Mostaghel and I. Tadjbakhsh 1973 International Journal of Mechanical Sciences 15, 429-434. Buckling of rotating rods and plates.
2. A. Nachman 1954 Journal of Applied Mechanics 42, 222-224. The buckling of rotating rods.
3. W. D. Lakin 1976 Journal of Engineering Mathematics 10, 313-321. Vibrations of a rotating flexible rod clamped off the axis of rotation.
4. J. T. S. Wang 1976 International Journal of Mechanical Sciences 18, 407-411. On the buckling of rotating rods.
5. W. D. Lakin, R. Mathon and A. Nachman 1978 Journal of Engineering Mathematics 12, 193-206. Buckling of a rotating spoke.
6. W. D. Lakin and A. Nachman 1978 Quarterly of Applied Mathematics 35, 479-493. Unstable vibrations and buckling of rotating flexible rods.
7. C. H. J. Fox and J. S. Burdess 1979 Journal of Sound and Vibration 65, 151-158. The natural frequencies of a thin rotating cantilever with offset root.
8. W. F. White, R. G. Kvaternik and K. R. V. Kaza 1979 International Journal of Mechanical Sciences 21, 739-745. Buckling of rotating beams.
9. C. R. Steele and K. E. Barry 1980 Journal of Applied Mechanics 47, 884-890. Asymptotic integration methods applied to rotating bars.
10. D. A. Peters and D. H. Hodges 1980 Journal of Applied Mechanics 47, 398-402. In-plane vibration and buckling of a rotating beam clamped off the axis of rotation.
11. C. H. J. Fox 1985 Journal of Sound and Vibration 98, 325-336. The free vibration of compact rotating radial cantilevers.
12. A. Nachman 1986 Journal of Sound and Vibration 109, 435-443. Buckling and vibration of a rotating beam.
13. D. C. Kammer and A. L. Schlack Jr. 1986 Journal of Vibration, Acoustics, Stress, and Reliabilty in Design 108, 389-393. Critical spin rate of rotating beams by Liapunov's direct method.
14. K. B. Subrahmanyam and K. R. V. Kaza 1986 Journal of Vibration, Acoustics, Stress, and Reliability in Design 108, 140-149. Vibration and buckling of rotating, pretwisted, preconed beams including Corriolis effects.
15. M. Gürgöze 1990 Journal of Sound and Vibration 143, 356-363. On the dynamical behaviour of a rotating beam.
16. H. F. Bauer and W. Eidel 1988 Journal of Sound and Vibration 122, 357-375. Vibration of a rotating beam, part II: orientation perpendicular to the axis of rotation.
17. A. D. Wright, C. E. Smith, R. W. Thresher and J. L. C. Wang 1982 Journal of Applied Mechanics 49, 197-202. Vibration modes of centrifugally stiffened beams.
18. F. B. Hildebrand 1976 Advanced Calculus for Applications. Englewood Cliffs, NJ: Prentice-Hall; second edition.
19. S. Naguleswaran 1994 Journal of Sound and Vibration 175, 613-624. Lateral vibration of a centrifugally tensioned uniform Euler-Bernoulli beam.
20. A. W. Leissa 1996 Private communication.

APPENDIX A: THE GOVERNING EQUATIONS

It is gratefully acknowledged that this Appendix is based on notes provided by Professor A. W. Leissa in a private communication [20]. An element of the beam is undeflected and in a typical deflected position is shown in Figure A1. Here s is the curvilinear co-ordinate

Figure A1. d'Alembert forces, forces along and normal to the neutral axis and moments on an element in a typical deflected position.
along the neutral axis. The free body diagram shows the force $T(s)$ along the neutral axis, the shearing force normal to the neutral axis and the d'Alembert forces. For small deflection the Euler-Bernoulli equation for bending is

$$
\begin{equation*}
M(s)=E I / R(s) \approx E I \mathrm{~d}^{2} y(x) / \mathrm{d} x^{2} \tag{A1}
\end{equation*}
$$

where $R(s)$ is the radius of curvature at s. Considering the equilibrium of the element one gets

$$
\begin{gather*}
\mathrm{d}[T(s) \cos \theta(s)-Q(s) \sin \theta(s)] / \mathrm{d} s+m p^{2}\left(R_{0}+x\right)=0 \tag{A2}\\
\mathrm{~d}[T(s) \sin \theta(s)+Q(s) \cos \theta(s)] / \mathrm{d} s+m \omega^{2} y(x)=0, \tag{A3}\\
Q(s)+\mathrm{d} M(s) / \mathrm{d} s=0 \tag{A4}
\end{gather*}
$$

The tension $T(x)$ in the radial direction and the shearing force $Q(x)$ in the transverse direction are

$$
\begin{gather*}
T(x)=T(s) \cos \theta(s)-Q(s) \sin \theta(s), \quad Q(x)=T(s) \sin \theta(s)+Q(s) \cos \theta(s) \\
Q(s)=-T(x) \sin \theta(s)+Q(s) \cos \theta(s) \approx-T(x) \mathrm{d} y(s) / \mathrm{d} s+Q(x) \tag{A5}
\end{gather*}
$$

For small deflection, $M(s) \approx M(x), \mathrm{d} / \mathrm{ds} \approx \mathrm{d} / \mathrm{d} x$ and equations (1-4) are obtained.

APPENDIX B: NOTATION

$a_{n+1}(c)$	coefficient of X^{c+n} in $Y(X, c)$ c
$C_{1,2,3,4}$	roots of indicial equation (11)
D, D^{n}	constants of integration in equation (17)
$E I$	operators $\mathrm{d} / \mathrm{d} X, \mathrm{~d}^{n} / \mathrm{d} X^{n}$
$F(X, c)$	flexural rigidity of beam
$F(X, c)_{c=0,1,2,3}$	trial solution function, equation (10)
l	length of beam
m	mass per unit length of beam
$M(s)$	amplitude of moment at curvilinear co-ordinate s
$M(x)$	amplitude of bending moment, equation (2)
$M(X)$	dimensionless amplitude of bending moment, equation (5)
p	rotational speed about axis
$Q(s)$	amplitude of shearing force normal to neutral axis
$Q(x)$	amplitude of shearing force normal to plane of rotation, equation (3)
$Q(X)$	dimensionless amplitude of shearing force, equation (5)
R_{0}	radius of rim; i.e., root offset radius
$R(s)$	radius of curvature of the deflected element
s	curvilinear co-ordinate along neutral axis
$T(s)$	force along neutral axis at s
$T(x)$	radial force at co-ordinate x, equation (1)
x	axial co-ordinate
X	dimensionless axial co-ordinate, equation (5)
$y(x)$	amplitude of deflection

$Y(X)$	dimensionless amplitude of deflection, equation (5)
$\beta(X)$	dimensionless axial tension, equation (5)
ω	a natural frequency
Ω	dimensionless natural frequency, equation (5)
$\Omega_{1,2,3}$	first, second and third natural frequency
η	dimensionless rotational speed, equation (5)
η_{c}	buckling rotational speed (i.e.m $\Omega=0$) in equation (27)
η_{t}	"tuned" rotational speed (i.e., $\left.\eta_{t}=\Omega\right)$ in equation (26)
ρ_{0}	root offset parameter, equation (5)
\sum	summation from 0 to ∞

